Modules
DSPy.rb modules provide a foundation for building reusable LLM components. The DSPy::Module
class serves as a base class for creating custom predictors that can be configured and tested.
Overview
DSPy modules enable:
- Custom Predictors: Build specialized LLM components
- Configuration: Per-instance, fiber-local, and global language model configuration
- Manual Composition: Combine multiple modules through explicit method calls
- Type Safety: Sorbet integration for type-safe interfaces
Basic Module Structure
Creating a Custom Module
class SentimentSignature < DSPy::Signature
description "Analyze sentiment of text"
input do
const :text, String
end
output do
const :sentiment, String
const :confidence, Float
end
end
class SentimentAnalyzer < DSPy::Module
def initialize
super
# Create the predictor
@predictor = DSPy::Predict.new(SentimentSignature)
end
def forward(text:)
@predictor.call(text: text)
end
end
# Usage
analyzer = SentimentAnalyzer.new
result = analyzer.call(text: "I love this product!")
puts result.sentiment # => "positive"
puts result.confidence # => 0.9
Module with Configuration
class ClassificationSignature < DSPy::Signature
description "Classify text into categories"
input do
const :text, String
end
output do
const :category, String
const :reasoning, String
end
end
class ConfigurableClassifier < DSPy::Module
def initialize
super
# Create predictor
@predictor = DSPy::ChainOfThought.new(ClassificationSignature)
end
def forward(text:)
@predictor.call(text: text)
end
end
# Usage
classifier = ConfigurableClassifier.new
result = classifier.call(text: "This is a technical document")
puts result.reasoning
Fiber-Local LM Context
DSPy.rb supports temporary language model overrides using fiber-local storage through DSPy.with_lm
. This is particularly useful for optimization workflows, testing different models, or using specialized models for specific tasks.
Basic Usage
# Configure a global default model
DSPy.configure do |config|
config.lm = DSPy::LM.new("openai/gpt-4o", api_key: ENV['OPENAI_API_KEY'])
end
# Create a module that uses the global LM by default
class Classifier < DSPy::Module
def initialize
super
@predictor = DSPy::Predict.new(ClassificationSignature)
end
def forward(text:)
@predictor.call(text: text)
end
end
classifier = Classifier.new
# Use the global LM (gpt-4o)
result1 = classifier.call(text: "This is great!")
# Temporarily override with a different model
fast_model = DSPy::LM.new("openai/gpt-4o-mini", api_key: ENV['OPENAI_API_KEY'])
DSPy.with_lm(fast_model) do
# Inside this block, all modules use the fast model
result2 = classifier.call(text: "This is great!")
# result2 was generated using gpt-4o-mini
end
# Back to using the global LM (gpt-4o)
result3 = classifier.call(text: "This is great!")
LM Resolution Hierarchy
DSPy resolves language models in this order:
- Instance-level LM - Set directly on a module instance
- Fiber-local LM - Set via
DSPy.with_lm
- Global LM - Set via
DSPy.configure
# Global configuration
DSPy.configure do |config|
config.lm = DSPy::LM.new("openai/gpt-4o", api_key: ENV['OPENAI_API_KEY'])
end
# Create module with instance-level LM
classifier = Classifier.new
classifier.config.lm = DSPy::LM.new("anthropic/claude-3-sonnet-20240229", api_key: ENV['ANTHROPIC_API_KEY'])
# Instance-level LM takes precedence
result1 = classifier.call(text: "Test") # Uses Claude Sonnet
# Fiber-local LM doesn't override instance-level
fast_model = DSPy::LM.new("openai/gpt-4o-mini", api_key: ENV['OPENAI_API_KEY'])
DSPy.with_lm(fast_model) do
result2 = classifier.call(text: "Test") # Still uses Claude Sonnet
end
# Create module without instance-level LM
classifier2 = Classifier.new
DSPy.with_lm(fast_model) do
result3 = classifier2.call(text: "Test") # Uses gpt-4o-mini (fiber-local)
end
result4 = classifier2.call(text: "Test") # Uses gpt-4o (global)
Using with Different Model Types
# Fast model for quick iterations
fast_model = DSPy::LM.new("openai/gpt-4o-mini", api_key: ENV['OPENAI_API_KEY'])
# Powerful model for final results
powerful_model = DSPy::LM.new("anthropic/claude-3-opus-20240229", api_key: ENV['ANTHROPIC_API_KEY'])
# Local model for privacy-sensitive tasks
local_model = DSPy::LM.new("ollama/llama3.1:8b", base_url: "http://localhost:11434")
classifier = Classifier.new
# Use fast model for testing
DSPy.with_lm(fast_model) do
test_results = test_cases.map do |test_case|
classifier.call(text: test_case.text)
end
puts "Fast model accuracy: #{calculate_accuracy(test_results)}"
end
# Use powerful model for production
DSPy.with_lm(powerful_model) do
production_result = classifier.call(text: user_input)
send_response(production_result)
end
# Use local model for sensitive data
DSPy.with_lm(local_model) do
sensitive_result = classifier.call(text: sensitive_document)
store_locally(sensitive_result)
end
Manual Module Composition
Sequential Processing
class DocumentProcessor < DSPy::Module
def initialize
super
# Create sub-modules
@classifier = DocumentClassifier.new
@summarizer = DocumentSummarizer.new
@extractor = KeywordExtractor.new
end
def forward(document:)
# Step 1: Classify document type
classification = @classifier.call(content: document)
# Step 2: Generate summary
summary = @summarizer.call(content: document)
# Step 3: Extract keywords
keywords = @extractor.call(content: document)
# Return combined results
{
document_type: classification.document_type,
summary: summary.summary,
keywords: keywords.keywords
}
end
end
Conditional Processing
class AdaptiveAnalyzer < DSPy::Module
def initialize
super
@content_detector = ContentTypeDetector.new
@technical_analyzer = TechnicalAnalyzer.new
@general_analyzer = GeneralAnalyzer.new
end
def forward(content:)
# Determine content type
content_type = @content_detector.call(content: content)
# Route to appropriate analyzer based on result
if content_type.type.downcase == 'technical'
@technical_analyzer.call(content: content)
else
@general_analyzer.call(content: content)
end
end
end
Working with Different Predictors
Module Using Chain of Thought
class ClassificationSignature < DSPy::Signature
description "Classify text into categories"
input do
const :text, String
end
output do
const :category, String
# Note: ChainOfThought automatically adds a :reasoning field
# Do NOT define your own :reasoning field when using ChainOfThought
end
end
class ReasoningClassifier < DSPy::Module
def initialize
super
# ChainOfThought enhances the signature with automatic reasoning
@predictor = DSPy::ChainOfThought.new(ClassificationSignature)
end
def forward(text:)
# The result will include both :category and :reasoning fields
@predictor.call(text: text)
end
end
# Usage
classifier = ReasoningClassifier.new
result = classifier.call(text: "This is a technical document")
puts result.category # => "technical"
puts result.reasoning # => "The document mentions APIs and code examples..."
Module Using ReAct for Tool Integration
class ResearchSignature < DSPy::Signature
description "Research assistant"
input do
const :query, String
end
output do
const :answer, String
end
end
class ResearchAssistant < DSPy::Module
def initialize
super
# Use a toolset (multiple tools from one class)
memory_tools = DSPy::Tools::MemoryToolset.to_tools
# You can also create custom tools with Sorbet signatures
# See the ReAct Agent Tutorial for custom tool examples
@tools = memory_tools
@predictor = DSPy::ReAct.new(ResearchSignature, tools: @tools)
end
def forward(query:)
@predictor.call(query: query)
end
end
Complete Example: Personal Assistant with Memory
Here’s a complete example showing how to build a personal assistant that uses memory and toolsets:
class PersonalAssistantSignature < DSPy::Signature
description "Personal assistant that remembers user preferences and context"
input do
const :user_message, String
const :user_id, String
end
output do
const :response, String
const :action_taken, String
end
end
class PersonalAssistant < DSPy::Module
def initialize
super
# Get all memory tools for the agent
memory_tools = DSPy::Tools::MemoryToolset.to_tools
# Create the ReAct agent with memory capabilities
@agent = DSPy::ReAct.new(
PersonalAssistantSignature,
tools: memory_tools
)
end
def forward(user_message:, user_id:)
# The agent can now use memory tools to:
# - Store user preferences
# - Retrieve past conversations
# - Search for relevant information
@agent.call(user_message: user_message, user_id: user_id)
end
end
# Usage
assistant = PersonalAssistant.new
# User sets a preference
result = assistant.call(
user_message: "I prefer dark mode for all applications",
user_id: "user123"
)
puts result.response
# => "I've saved your preference for dark mode. I'll remember this for future recommendations."
# Later, user asks about UI preferences
result = assistant.call(
user_message: "What UI preferences do I have?",
user_id: "user123"
)
puts result.response
# => "Based on what you've told me, you prefer dark mode for all applications."
Building a Stateful Customer Service Agent
class CustomerServiceSignature < DSPy::Signature
description "Customer service agent with conversation history"
input do
const :customer_query, String
const :customer_id, String
end
output do
const :response, String
const :escalation_needed, T::Boolean
const :issue_resolved, T::Boolean
end
end
class CustomerServiceAgent < DSPy::Module
def initialize
super
# Memory for conversation history and customer data
memory_tools = DSPy::Tools::MemoryToolset.to_tools
@agent = DSPy::ReAct.new(
CustomerServiceSignature,
tools: memory_tools
)
end
def forward(customer_query:, customer_id:)
# Agent can:
# - Store conversation history
# - Remember customer issues
# - Track resolution status
# - Access previous interactions
result = @agent.call(
customer_query: customer_query,
customer_id: customer_id
)
# Store conversation for future reference
store_conversation(customer_id, customer_query, result.response)
result
end
private
def store_conversation(customer_id, query, response)
timestamp = Time.now.to_i
DSPy::Memory.manager.store_memory(
{
query: query,
response: response,
timestamp: timestamp
}.to_json,
user_id: customer_id,
tags: ["conversation", "customer_support"]
)
end
end
# Usage
agent = CustomerServiceAgent.new
# First interaction
result = agent.call(
customer_query: "My order hasn't arrived and it's been 10 days",
customer_id: "cust456"
)
# Follow-up interaction - agent remembers previous context
result = agent.call(
customer_query: "Any update on my missing order?",
customer_id: "cust456"
)
puts result.response
# => "I can see from our previous conversation that your order was delayed. Let me check the latest status..."
For more details on creating tools and toolsets, see the Toolsets documentation. For advanced memory patterns, see the Memory Systems documentation.
Module Using CodeAct for Dynamic Programming
class DataAnalysisSignature < DSPy::Signature
description "Analyze data using Ruby code execution"
input do
const :dataset_description, String
const :analysis_task, String
end
output do
const :analysis_result, String
end
end
class DataAnalyst < DSPy::Module
def initialize
super
@predictor = DSPy::CodeAct.new(DataAnalysisSignature, max_iterations: 8)
end
def forward(dataset_description:, analysis_task:)
# Combine inputs for the code execution agent
task = "Dataset: #{dataset_description}\nTask: #{analysis_task}"
result = @predictor.call(task: task)
# CodeAct provides additional execution context
{
analysis_result: result.solution,
execution_steps: result.history.length,
code_executed: result.history.map { |h| h[:ruby_code] }.compact
}
end
end
# Usage
analyst = DataAnalyst.new
result = analyst.call(
dataset_description: "Array of sales data: [100, 150, 200, 300, 250]",
analysis_task: "Calculate the average and identify the highest sale"
)
puts result[:analysis_result]
# => "Average: 200, Highest: 300"
puts result[:execution_steps]
# => 3
Extensibility
Creating Custom Modules
You can create custom modules to implement your own agent systems or inference frameworks, similar to how DSPy::ReAct
or DSPy::CodeAct
are built. Custom modules are ideal for:
- Building specialized agent architectures
- Implementing custom inference patterns
- Creating domain-specific processing pipelines
- Extending DSPy.rb with new capabilities
class CustomAgentSignature < DSPy::Signature
description "Custom agent for specialized tasks"
input do
const :task, String
const :context, T::Hash[String, T.untyped]
end
output do
const :result, String
const :reasoning, String
end
end
class CustomAgent < DSPy::Module
def initialize
super
# Initialize your custom inference components
@planner = DSPy::ChainOfThought.new(PlanningSignature)
@executor = DSPy::CodeAct.new(ExecutionSignature)
@validator = DSPy::Predict.new(ValidationSignature)
end
def forward(task:, context: {})
# Implement your custom inference logic
plan = @planner.call(task: task, context: context)
execution = @executor.call(
plan: plan.plan,
context: context
)
validation = @validator.call(
result: execution.solution,
original_task: task
)
{
result: execution.solution,
reasoning: plan.reasoning,
confidence: validation.confidence
}
end
end
# Usage
agent = CustomAgent.new
result = agent.call(
task: "Analyze data and generate insights",
context: { data_source: "database", format: "json" }
)
Testing Modules
Basic Module Testing
# In your test file (using RSpec)
describe SentimentAnalyzer do
let(:analyzer) { SentimentAnalyzer.new }
it "analyzes sentiment" do
result = analyzer.call(text: "I love this!")
expect(result).to respond_to(:sentiment)
expect(result).to respond_to(:confidence)
expect(result.sentiment).to be_a(String)
expect(result.confidence).to be_a(Float)
end
it "handles empty input" do
expect {
analyzer.call(text: "")
}.not_to raise_error
end
end
Testing Module Composition
describe DocumentProcessor do
let(:processor) { DocumentProcessor.new }
it "processes documents through all stages" do
document = "Sample document content..."
result = processor.call(document: document)
expect(result).to have_key(:document_type)
expect(result).to have_key(:summary)
expect(result).to have_key(:keywords)
end
end
Best Practices
1. Single Responsibility
# Good: Focused responsibility
class EmailClassifier < DSPy::Module
def initialize
super
# Only handles email classification
end
def forward(email:)
# Single, clear purpose
end
end
# Good: Separate concerns through composition
class EmailProcessor < DSPy::Module
def initialize
super
@classifier = EmailClassifier.new
@spam_detector = SpamDetector.new
end
def forward(email:)
classification = @classifier.call(email: email)
spam_result = @spam_detector.call(email: email)
{
classification: classification,
spam_score: spam_result.score
}
end
end
2. Clear Interfaces with Signatures
class DocumentAnalysisSignature < DSPy::Signature
description "Analyze document content"
input do
const :content, String
end
output do
const :main_topics, T::Array[String]
const :word_count, Integer
end
end
class DocumentAnalyzer < DSPy::Module
def initialize
super
@predictor = DSPy::Predict.new(DocumentAnalysisSignature)
end
def forward(content:)
@predictor.call(content: content)
end
end
Basic Optimization Support
Modules can work with the optimization framework through their underlying predictors:
# Create your module
classifier = SentimentAnalyzer.new
# Use with basic optimization if available
# (Advanced optimization features are limited)
training_examples = [
DSPy::FewShotExample.new(
input: { text: "I love this!" },
output: { sentiment: "positive", confidence: 0.9 }
)
]
# Basic evaluation
result = classifier.call(text: "Test input")